ME 320 - Heat Transfer

Why is heat transfer important and what is it?
A good example is power generation (from thermo)

What parts of this thermodynamic cycle (Rankine) involve heat transfer? ⇒ ALL of Them!

Pump: Friction losses generate heat ⇒ needs to be dissipated to keep pump cool.
Boiler: Boiling process adds heat to the working fluid
Turbine: Friction losses & conduction losses result in heat loss to the surroundings ⇒ S increases
Condenser: Condensation process removes heat from working fluid.
In general, thermodynamics is a state approach. Heat transfer tells you the details of what is in between each state and how it happens. Allows us to develop tools to help design real life thermodynamic components.

For example:

\[\begin{align*}
1 & \quad Qin \\
\text{Boiler} & \quad \text{Tin, Pin} \rightarrow \text{Tout, Pout} \\
2 &
\end{align*} \]

From enthalpy tables, you can determine Tout, Pout if given Tin, Pin & Qin. However, as an engineer, what size should your boiler be to obtain the Qin required? How is the fluid obtaining the heat in the boiler? How do we make this process most efficient?

These are all questions you will be able to answer by the end of ME 320.

Other important applications:

- Electronics Cooling \Rightarrow Moore's Law

\[\begin{align*}
\text{# Transistors per mm}^2 & \quad \text{Year} \\
1970 \rightarrow 2004 \rightarrow 2017 & \quad \text{Too many devices generating heat per unit area. Not able to remove the heat. Multi-core devices developed}
\end{align*} \]

- Biology \Rightarrow Human Body \Rightarrow Sweating, Blood flow
Tools we Need:

1. Conservation of mass
2. Conservation of momentum
3. Conservation of energy *(most important one)*
4. Entropy ⇒ Heat always flows from Thigh to Tlow (naturally)

Some Basics:

What are the important parameters in heat transfer:

\[T \Rightarrow \left[^\circ C \text{ or } K \right] \Rightarrow \text{Temperature = average kinetic energy in random directions.} \]

\[Q \Rightarrow \left[W \text{ or } J/s \right] \Rightarrow \text{Heat transfer rate} \]

\[q'' \Rightarrow \left[W/m^2 \right] \Rightarrow \text{Heat flux} \]

\[C_p \Rightarrow \left[J/kg \cdot K \right] \Rightarrow \text{Specific heat} \Rightarrow \text{how much energy it takes to raise the temperature of 1 Kg of a material by 1} ^\circ C \text{ or } 1K. \]

\[k \Rightarrow \left[W/m \cdot K \right] \Rightarrow \text{thermal conductivity} \Rightarrow \text{more on this later} \]

Modes of Heat Transfer

Conduction: ⇒ Energy transfer via direct molecular contact *(called diffusion)*

\[KE\sim T_{\text{hot}} \Rightarrow \text{Molecular collisions transfer kinetic energy} \]

\[KE_{\text{avg}} = \left[\frac{1}{2} m v^2 \right] = \frac{3}{2} k_B T \Rightarrow \text{ME 420} \]

Examples: 1) Heat transfer in a solid object heated on one end

2) When you touch something hot

Convection: ⇒ Conduction with fluid flow

Examples: 1) Boiling, pipe flow, ocean currents, blood flow